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This paper contains a series of easy constructions and observations relating to the Lascar group
and to simple theories. !

In §1 we review basic model theoretic ideas, relating mostly to model completion and saturated
models. We do so in order to introduce a framework very slightly more general than the usual
first-order one that will be useful to us, and that we hope may be useful in the future. We will
refer to this as ” Robinson theories”.

In §2 we give an account of Lascar’s beautiful construction, associating a compact topological
group to first-order theories. Our description, influenced by work of Kim-Pillay, applies to all
first order theories. For ”(G-compact” theories the results coincides with the full Lascar group;
for others, if there are any others, it gives a quotient of the full Lascar group. We present the
Lascar group as an automorphism group of a compact topological structure associated naturally
with the theory, that we call the Kim-Pillay space.

In §3 we find a connection between the Lascar group and certain spaces of theories. In particular,
we see that a necessary condition for the existence of a theory with connected Lascar group (in a
certain class of theories closed under interpretations), is that there exist a continuous path in the
space of theories (within the given class), interpolating between the theory of the empty graph to
the theory of the complete graph. It 1s worth noting that even if we start with a first order theory,
this analysis necessarily involves Robinson theories; it would not have been possible without the
extension of the framework in §1.

The Lascar group was brought into prominence in recent work of Kim and Pillay, on simple
theories. We will discuss simplicity briefly in the introduction to §4. This property was introduced
in [Sh1] as a generalization of stability. After a decade of neglect, a few years of intense activity
by a number of workers, sparked by Kim’s thesis and by some work in finite rank, brought the
state of knowledge to nearly the same level as for stable theories. It was found that a theory
of independence can be developed that is as coherent and satisfactory as in the stable context,

though necessarily with some different features. However, the general theory as described by Kim
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and Pillay used Lascar types rather than ordinary types or strong types.

We show in §4.1 that there exists a rank one simple Robinson theory with connected Lascar group;
indeed any compact group can occur in this way. We view this very easy observation as showing
that (at least in the more general framework) the Kim-Pillay theory is perfect as it stands; far
from a temporary expedient, the use of the Lascar group is fundamental. As suggested by Kim
and Pillay, infinitely-definable objects, and in particular equivalence relations, take the role of
definable objects in stability theory; and arbitrary compact groups replace the profinite groups
of stability theory.

In §4.2-§4.3 we modify an old construction method of stable theories to construct a rank 1, simple,
Np-categorical theory. This contrasts with the stable case, where Zil’ber’s classification theorem
shows that all rank 1 Ny-categorical structures are small modifications of projective geometries
over finite fields.

The independent amalgamation property characteristic of simple theories has been called, in other
contexts, the P(3)-amalgamation property by Shelah. (This means that the natural indexing
set for the substructures involved is the set of proper subsets of a three-element set.) From this
point of view simplicity is only one of a family of increasingly stronger conditions, the P(n)~-
amalgamation properties. (All these existence properties follow from uniqueness in the stable
case.) The cases n < 3 are the only one with direct implications to ranks, or to the structure of
definable sets, rather than relations, and as such it fits better with more familiar conditions, such
as stability. (Most stability theorists are at first surprised to find that the generic pyramid-free
hypergraph is simple, while the generic triangle-free graph is not.) In the appendix §5 (text of a
letter to Shelah from some years ago), we use this observation to answer a question from [Shl]:
because of the different amalgamation properties, it is consistent with ZFC that not all simple

unstable theories have the same saturation spectrum.

1 Quantifier Separation

We wish to generalize somewhat the usual ("first-order”) context of model theory. Our original
motivation arose from stability theory. If H is a definable subset of a stable structure, then H,
with the induced structure, is itself stable. However if H is defined by an infinite set of formulas,
the full first-order theory of H is usually unstable; stability theorists often had to use the awkward
hypothesis ”let H be infinitely-definable in a stable theory”, knowing however that the full first
order theory can be irrelevant, and standard stability theory applies full well within H.

It turns out that one can define a context, very slightly more general than first-order, in which the
main techniques of model theory remain valid (though of course individual results need no longer
hold.) We have in mind omitting types, indiscernibles, prime models, compactness, saturated
models and saturated Galois theory, stability, w-stability. Roughly speaking, for countable lan-
guages, one takes a (very) small step into L., ., permitting a sentences of the form (Jz)¢ = A, ¥n.

We will give a description along slightly different lines however.



Definition 1 Let L be a language, A a collection of formulas, closed under subformulas and
under Boolean combinations. Let XTI denote the set of formulas of the form (a1 ...xx)¢ (resp.
(Vey...ei)¢) with ¢ € A, We will refer to A,X,T1 as the basic,existential,universal formulas,
respectively. A formula with no further designation will mean a A-formula.

Let T be a universal theory, i.e. a set of sentences from Il. Assume that T decides at least the
basic sentences, 1.e. if ¢ € A and ¢ i1s a sentence then ¢ € T or ~¢ € T. We will say that T 1s
a Robinson theory, or that T admits quantifier separation, if for any two basic formulas ¢(xz,y)
and ¥(y, z), (where x and z may be taken to be single variables, but y is a tuple of any length),
if T | ¢(x,y) = ¢(y, 2) then there exists a 6(y) € A such that T |= ¢(x,y) = 0(y) = ¢(y, 2).

Remarks
1. Quantifier Interpolation may seem a more suitable name, but see 1.5.

2. An example is the first order case, where A 1s the set of all formulas. In this case the

interpolation property holds with, say, § = (3z)é¢.

3. We have implicitly in mind that a Robinson theory 7' carries with it the following completion

T
(F2)g(x,y) < )\ C(0)
where
Clg) ={~0(y) : T+ (Vo) (Vy)(0 = —¢)}

T is first-order iff each C(¢) is finitely generated iff 7' has a model completion. (And in this case,
T is the model completion .) We will refer to this as the first order case and say ”T is first order”,

though we really mean T.

4. Note that quantifier separation is a property of the universal theory itself, and not of a potential
extension. Thus if 7" is a universal theory in L, with a model completion f, (so that the universal

part of T is T), then T is Robinson.

5. ("Morley-zation”) When working in a general context, we may always take A to be the set
of quantifier-free formulas (we can achieve this in a definitional expansion of the language, in
which every A-formula becomes equivalent to a new basic relation.) This is not always conve-
nient however in more concrete situations where specific representations of the language may be
available. We will be able to make this assumption throught most of the paper, however; thus if
A is not otherwise specified, it will be the set of quantifier - free formulas; we will refer to Il as

the universal formulas, etc.



6. Another justificiation for the name ” Robinson theories” (that I did not see in advance) is that
such universal theories have a unique forcing extension in the sense of model theoretic forcing.
However, this canonical completion is more easily described in other ways, and is misleading: the

idea here is precisely that the higher quantified formulas need not be considered.

7. Here and in the sequel, all formulas are taken to be in A unless explicitly mentioned otherwise;

and Th(U) stands for the set of universal sentences true in U.

We will now give some equivalent forms of the definitions, and verify that some standard model
theoretic constructions remain valid. There is room for looking at the validity of failure of deeper
results in this context, but we make not attempt here to do so.

We leave somewhat open the word ”small substructure”. We have in mind that every substructure
of interest to us is small in this sense. Possible specific meanings include ”countable” | ”smaller

” 90

than k7 ”set - sized”, etc.

Definition 2 e Let L be a language. A set D defined in an L-structure M using a basic
formula of L will be called basic; if parameters from A C M are used, we will call D
A — basie.

o An L-structure M is (A -) homogeneous if whenever A, B are small substructures of M, and
f A — B is an tsomorphism preserving A-formulas, then f extends to an automorphism

of M.

o An L-structure M 1is compact if whenever Y is a small collection of M - basic subsets of M,

and every finite subcollection has nonempty intersection, then Y has nonempty intersection.

o M is a universal domain for L if M is compact and homogeneous. If in addition Th(M) =

T, we say that M 1s a universal domain for T'.
Lemma 1.1 Any unwersal domain for T is existentially closed among models of T'.

Proof  Let ¢(x,b) be a formula over a universal domain U | satisfied in some model N of T.
Then N embeds into U , so there exists ' € U | with the same basic type as b, such that ¢(z,b")

has a solution in U . By homogeneity, so does ¢(x, b).

Lemma 1.2 Let U be a uniwersal domain. Then every X, set in U s the intersection of a small
family of basic sets. Conversely, if U is compact and the above condition holds, then Th(U) is

Robinson.

Proof Let X be a X; set, defined say over the finite set A. Let I' be the collection of all
A-basic sets digjoint from X. For any element a, let T(a) = {o(a) : 0 € Aut(U/A)}. Then
T(a) =nN{Y :Y A-basic,a € Y}. If a € X, then T(a) N X = §; so by compactness there exists



an A-basicY,a €Y ,Y € F. Thus the complement of X 1s contained in the union of F'; so X 1s
the intersection of the complements of the sets in F.

For the converse, we show the separation property. If X;,X5 are disjoint X sets, then X; = NF
and X5 = NFy; by compactness for some Y; € F;, Y1 NY, =, so Y] separates Xy and Xs.

Lemma 1.3 If "small” means "< k”,then any two universal domains for T of cardinality k are

1somorphic
Proof Standard proof of uniqueness of saturated models; back - and -forth of A-isomorphisms.

Proposition 1.1 Let T be a universal theory, complete for A-sentences. T is Robinson iff there
erists a universal domain for T (equivalently, iff every model of T embeds into a universal do-

main.)

Proof  Let U be a universal domain for 7. Assume T + ¢(z,y) = ¥(y,z). We saw that
(Jy)¢(z, y) is equivalent there to a conjunction of basic formulas F'. So U | F(y) = ¢(y,z). By
compactness, for some 6 € F, U = 0(y) = ¢(y, 2).

The converse direction is proved by the standard proof of existence of saturated models.

Notation 1.4 U is a universal domain. A,B etc. denote small subsets of U. A subset P of X
is of class Ty if there exists a basic subset T of X x'Y for some Y, such that P = nx(T).

Lemma 1.5 T s Robinson iff whenever XY are disjoint X1 setls, there exists a basic Z sepa-
rating X and Y, i.e. X C Z and YN Z = 0. In particular, if X and its complement are 31, then

X s basic.

Lemma 1.6 Let U be a universal domain, X a U-basic set.

1. Let F be a small collection of existential formulas over U. If every finite subset of F' has a

solution, so does F' as a whole.

2. Let'Y be a small collection of 31 subsets of X, with the finite intersection property. Then

Y has nonempty intersection.

3. Let X be a U-basic set, and suppose X is invariant under Aut(U/A). Then X is an A-basic

set.

Proof (1) By treating the existentially quantified variables as new free variables, we may
assume here that F' is a small collection of quantifier-free formulas. We propose to inductively
replace the free variables of F' by elements of U, in such a way that the system remains finitely
satisfiable. Thus let © be one of the free variables. Let F, be the set of all basic formulas
é(x) that follow from Th(U)U F. Then by the compactness assumption, Fy is satisfied by some
a € U. By quantifier separation, if ¢(y, z) follows from F then v (y, a) is satisfiable: otherwise, by
homogeneity, whenever a’ realizes the basic type p of a, there is no y with ¥(y,a’). So pU¢(y, »)



is not satisfied in U, hence by compactness pg U ¢(y, ) is not satisfied, for some finite py C p.
But then if é(x) is the conjection of pg, then the negation of ¢ follows from F', hence is true of
a, a contradiction. Thus we have shown that I’ remains finitely satisfiable if x is replaced by a;
iterating this we can solve F.

(2) This is a special case of (1)

(3) Let Fyy be the collection of basic formulas over A. For any ¢(z) let ¢ * (z,y) be the formula
é(x) ~ ¢(y). Then {phix(z,y): ¢ € Fy} implies that z,y are conjugate by Aut(U/A), and hence
implies @ x (x), where 6(x) defines X. The result follows.

Definition 3 (Induced structure) o Let M be an L-structure, and let A be a substructure
of M. The induced structure on A is the collection of sets A*NY, where Y is a basic subset
of M*. (The language is not L, but obtained canonically from L and k. )

Definition 4 Let U be a universal domain for L. Let X; be a basic subset of U™, and F; a
basic subset of U™, such that E; is the graph of an equivalence relation on X;. Let Y; be the
quotient X;/E;. Let m; : X; — Y; be the projection. A subset S of Y1 x ...V, X X is called basic
if {(z1, ooy, @) o (Myi@y, ..o, Tm@m, @) € S} is basic. Write Ux for U enriched by the new sorts

Yi, and the new basic sets. If the X;, E; enumerate all the pairs as above, we write Ux = U®1.

Definition 5 Let U be a universal domain.
o We say that Th(U) is stable if every A-formula is a stable formula in the sense of Shelah.

o We define the (ordinal) Morley dimension and degree of basic subsets of U. Assume the
notion of Morley dimension 3 has been defined, for § < «, and let X be basic. We say that
X has Morley dimension a if it does not have Morley dimension 3 for 3 < «, and if for
some m, whenever X = X1 U ... X411, and the union is disjoint, then at least one X; has

Morley dimension < 3. The least such m s the Morley degree of X.

o U s Morley if, as a basic subset of U, U has some Morley dimension.

Lemma 1.7 1. U 1s Morley iff there are countably many complete, consistent types in any

countable set of formulas of L(U)

2. If U is Morley, then every basic subset of U" has Morley dimension.

Proof
1. ¢f. [Sh2]

2. When the language is countable, (1) is equivalent to: countably many conjugacy types in U
over any countable set. It follows easily that there are only countably many conjugacy types
in U” over any countable set. In general, one can reduce to this case by finding countable
languages such that the condition of 1.2 holds (and working in a universal domain for that

language.)
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Lemma 1.8 Let U be a universal domain for L, and suppose U has Morley dimension. Then

Ue? is a universal domain (for the appropriate language.)

Proof (Compare [PPo].) The compactness property for U¢? follows easily from the compactness

property for U. To prove homogeneity, we require the following lemma and corollaries.

Lemma 1.9 Let E be a basic equivalence relation on the basic set X. ForY C X, let EY =
{r € X : (x,y) € Eforsomey € Y}. If Y1,Ya are basic subsets of X, and EYy C Ya, then there
erists a basic Z, BEZ = 7, and BEY, C Z C Y5.

Proof Suppose not. Since £V is disjoint from F(X \Y2), the two X sets can be separated by a
basic set Y3/9. Then EY; C Y3/ and EY3/3 C Ya; and there is no basic Z with EZ = Z between
either Y7 and Y33, or between Y3/ and Ys. In this way we define Y, for every diadic rational o
in the interval. We obtain a strictly increasing dense chain of inclusions; by considering the sets

Y5 \ Y. we obtain a contradiction to Morley-ness.

Corollary 1.10 IfY s a basic subset of X, then EY 1is the intersection of basic E-saturated
sets Z; (i.e. EZ; = Z; ).

Proof  We have EY = n;W;,with W, basic. By the lemma, there exists 7; = EZ; with
EY C Z; CW;. Clearly Y = N; Z;.

Corollary 1.11 If X is an E-saturated X1 subset of 7, then EX 1s the intersection of basic

FE-saturated sets.

Proof We have X = n;Y;,with W, basic, so X = N; EY;, and we can apply the previous corollary.
Proof of 1.8 let A,B be small subsets of U¢q and let ¢ : A — B be an isomorphism. Let a
be an element of U; we will extend ¢ so that the domain includes a. By compactness, it suffices
to show that if b is a tuple from A, and X a basic set with (a,b) € X, then there exists o’ with
(a',o(b)) € X. Say b € Y/E. Then T = {y € Y : (3»)((», (y/F)) € X)} is an E-saturated
¥;-subset of Y, so by 1.11 it is the union of basic E-saturated sets. Hence T/E is the union of
basic sets, so it is preserved by o. Since b € T/FE, o(b) € T/E, which is what we needed to show.
In this way ¢ may be extended so that the domain has the following property: whenever Y is
basic, E a basic equivalence relation on Y and ¢/E € A, then for some ¢/ € A, eE¢’. At this point
the homogeneity of U can be used to extend o|U to an automorphism of U; this automorphism

extends uniquely to U®q, and necessarily extends o.
Lemma 1.12 Any X1 -function [ is basic

Proof (x,y) € fiff (Y )y # ¢ and (z,y') € f), so the complement of f is also ¥y, and by

separation f is basic.



Lemma 1.13 Let U be a universal domain.
1. If c € U, then the expansion (U, c¢) is a universal domain for L(c).

2. If Y 1is a basic subset of U™, then Y, with the induced structure, is a universal domain for

Th(Y).

3. If Y is a small intersection of basic subsets of U, then Y, with the induced structure, is a

universal domain for Th(Y)

Proof (1) Homogeneity for U implies homgeneity for (U, ¢); compactness for (U, ¢) follows from
compactness for U and homogeneity for U.
(3) Homogeneity for X follows from homogeneity for U; note that every automorphism of U

preserves X. Compactness for X 1s also clear from compactness for U.

Lemma 1.14 Let U be a universal domain. If U s a saturated model of U in the usual first-
order sense, or just if U is |L|T-compact for universal formulas, then the full first order theory

of Th(U ) is model complete

Proof Any existential formula is equivalent to a conjunction of basic ones. (Namely, (3z)¢(xz,y)
to the conjunction of all negations of basic formulas o(y) implying —¢(z,y).) If compactness

holds for universal formulas, then any existential formula is equivalent to a basic one.

Proposition 1.2 (Stability) Suppose U is a universal domain, Th(U) stable.
1. (Definability.) Fvery A- type over U is definable, by a A-formula.

2. (Fxistence of nonforking extension.) Let C' C U, p a A-type over C. Then there erists a
basic type px over G extending p, with px definable over acl(C).

3. (Symmetry.) Let C' = acl(C) C U. Suppose p(x),q(y) are basic types over U, definable
over acl(C). Let ¢(x,y) be an arbitrary formula. Let a,b realize p|C,q|C respectively. Then

¢(a,y) € q iff ¢(x,0) € p.

4. (Uniqueness.) Let C' be algebraically closed in the following sense: the classes of a C'-
basic equivalence relation with finitely many classes are all C'-basic. Then the nonforking

extension p*in (2) is unique. Hence it is defined over C.

5. (Forking characterization) Let p(x) be a basic type over C = acl(C), px its non-forking
extension, and suppose ¢(x,b) € px. Then there exist conjugates b; of b (i € w) such that
p(x)U p(x,b;) 1 i € w} is inconsistent.

6. (Finiteness and conjugacy). (Finitely many T-types, for finite T C A, definable over C' and
consistent with a given A-type over C'.)



Proof  The results on local stability citeHP apply, since every basic, or even X, formula is
stable. Tn the third clause we use the fact that a if ¢(z,y) is an arbitrary formula true of (a, b),

it follows from some A- formula true of (a, b).

Remark 1.15 Suppose U 1is as in the above proposition. Let X be a C-basic set with Morley
dimension. Elements of X that are not in any C-basic set of smaller dimension are called generic.
There are finitely many types over acl(C) of generic elements. If ¢(x,y) is a A-formula over C,
there exists a C-atomic 0(x) such that 0(a) holds iff for any element b of X, generic over C'Ua,
é(a,b). We express 6(x) as: "for a generic y in X, ¢(x,y)”. Using the forking characterization
(6), 0(a) fails iff {y € X : ¢(a,y)} has Morley dimension less than that of X.

Lemma 1.16 Let U be a universal domain with Morley dimension. Let Py be basic, M C P§
basic, P, C P basic, G = N, P,. Suppose MNG? defines a group structure on G. Then G = N, Qn
where (Qn, M N Q3) is a group for each n.

Proof  We may assume the Morley dimension and multiplicity of P, is constant, and that
Pot1Pot1 C Py. (For z,y € Py, we write xy for the unique z € Py such that (z,y,z) € M, if it
exists.) Tt follows that for ¢ € G, aP, N P, has the same Morley dimension and degree as P,.
Fix n > 2, and let

Q ={x € P, : for generic y € P2y € P}

Then @ is basic. We have G C Q C P,,—1. Further @ is a group under multiplication: if z,y € @,
let ¢ € P, be generic to (z,y); then yc € P,,, and by a dimension argument, ye is generic to z; so

xyc € Py,.

2 The compact Lascar group

A remarkable connection between compact groups and first order theories was discovered by
Lascar [Lascar]. He associated to each first order theory a certain quotient of the automorphism
group of a saturated model. For a large class of theories, (the ”G-compact” theories,) he showed
that this quotient has the structure of a compact topological group.

We will repeat here Lascar’s ideas in a slightly more elementary way (particularly with regard to
the definition of the topology), influenced by work of Kim and Pillay. We will obtain a compact
group associated canonically to any first order theory; for G-compact theories, it is the same as
Lascar’s group. We will denote Lascar’s full group as LS(T) (but we will never use it), while
the compact quotient that we work with (and will construct directly) will be denoted Ls(T').
Whether LS = Ls in general remains open.

We obtain the group as a group of homeomorphisms of a natural compact topological space
associated with T', that we will call the Kim-Pillay space. This space has the type space, and the
strong-type space, as quotients, but in general is bigger and has nontrivial connected components.

We will call the associated group the compact Lascar group. Examples of Poizat involving actions



of real algebraic groups show that any compact real algebraic group can be a Lascar group of
some theory.

Recent work of Kim and Pillay [K1], [KP] has shown that simple theories are G-compact, and that
the Lascar group described here agrees with the one in [Lascar]. The question of the existence or

construction of non (G-compact theories appears not to have been investigated.

2.1 The Kim-Pillay space

Let U be an Rg-saturated structure. A relation on U 1s said to be 0-definable if it is determined
by a formula without parameters. If a binary relation on U is the intersection of 0-definable
relations, and is an equivalence relation with at most 2|71 classes, we call it a Kim-Pillay relation.
The intersection of all Kim-Pillay relations is Kim-Pillay; we denote it by Fxp.

Equivalently:

Definition 6 Let F be a mazximal family of 0-definable reflexive, symmetric binary relations with

the following properties:

1. If R € F, every R-anticlique is finite. (An R-anticlique is a set of elements containing no
pair from R.)

2. If R€ F, there exists R' € F such that R'(z,y)&R'(y,z) = R(x, z).
In any sufficiently saturated model, Exp is defined by the family F.

To justify the definition, note that the union of any collection of such families again has the same
properties.

Note that if R € F then for each k there exists R’ satisfying (1), and such that if R'(x;, 2;41) for
i=0,..., kthen R(xzo,xs).

Question 7 Let L be a countable language. Is the set of pairs (¢, T) with ¢ € F(T), Borel?

A first step would be to construct a graph of diameter > 2, a finite bound on the size of antichains,

and having a 1-point Kim-Pillay space (or to show that this is impossible.)

For our purposes, a universal domain for T 1s an (22|T|)+—saturated, N;-homogeneous model of
T. We will speak as if the theory is 1-sorted, though if it i1s many sorted the same results will

apply sort-wise.
Definition 8 Let T' be any first-order theory, or Robinson theory. Let U be a universal domain

for T. Define the Kim-Pillay space of T

XKP(T) =U /EKP

10



We topologize Xip as follows: a basic closed set is the image in X of a definable subset of U
(possibly with parameters). We also give it a (finitary) structure, where the relations are the

wmages of the 0-definable relations on U .

If Ris a definable n-ary relation, let R C Xgp" be the image of R. It is of course quite possible
that RN S # (R N §) However, RUS = RU S, so the complements of the basic closed sets form

a basis for a topology.

Proposition 2.1 1. Xgp is a compact Hausdorff space.
2. The finitary relations R are closed.

3. If L is countable, Xgp has a countable basis for the topology (hence is a Polish space.)
Indeed if M is any model, the set of complements of sets R with R M-definable, forms a
basis for the topology.

4. If f: Xgp — Xgp respects the relations R, then f is 1-1 and onto; and there exists an

automorphism of U inducing f on Xgp.

Proof 1) For compactness, it suffices to check that every family of basic closed sets C; with
the finite intersection property, has non-empty intersection. Note that the number of closed sets
C; is at most 21XxPl (to give a trivial estimate.) C; is image modulo Fxp of a definable set
D;. The family of the sets D; has the finite intersection property. By compactness, the D; have

non-empty intersection, hence so do the Cj.

To see that the space is Hausdorft, let ¢, d be Exp-inequivalent points of U . Since Exp is an
equivalence relation, there is no e with (c,e) and (e,d) both in Exp. Using compactness, one

can find a O-definable R, Fxp C R, such that
-3z R(c, z)&R(x,d))

Let F = {x:-R(c,z)}, F' ={y: R(c,2)} Then FUF' =U . Let F,F’ d, ¢ be the images of of
F F'.d,c modulo Exp. Then FUF’ = Xgp. Moreover, d ¢ F', and ¢ ¢ F. The complements of
F F' are open sets separating é,d. Thus X p is Hausdorff.

2) Note first that the unary relations are closed by definition. define Xgp (D) = D/(Exgp(D)) in
a similar manner for any O-definable D C U ™ (using the induced structure.) Then the natural

map

XKP(D1 X Dz) — XKP(Dl) X XKP(DZ)

is surjective and continuous. Since both spaces are compact Hausdorff, the image of a closed set

1s closed.

11



3) Let X’ be the same set Xgp, but topologized by taking only images of M-definable closed
sets as basic closed sets. Then the identity X — X’ is continous; in particular X’ is compact.
We show it is Hausdor{f by improving the above argument slightly.

First find a O-definable R, Fxp C R, such that there are no ¢,d" with R(c,¢'),R(¢/,d") and
R(d', d).

Pick a O-definable R’ such that Fxp C R’ C R, and such that if (z,y), (v, 2) € R then (z,z) € R.
Since Fxp has boundedly many classes, every R'-anticlique is finite. Let I be a maximal R'-
antichain among elements of M. Then I is finite; since M is a model, I is a maximal R’-antichain
in U . Thus there exists ¢/ € M with R'(¢/, ¢).

Let F = {x:=R(c,z)}, F'={y: R(¢',z)} Then FUF' = Xgp. Moreover, d ¢ ', and ¢ ¢ F.
(If ¢ € F, then there exists ¢’ with ¢’/ Egpec, and ~R(¢',¢”). However R'(c’,c) and R'(c,c"),
contradiction. If d € F’, then there exists d'Expd with R(c’,d'). But also R(c,¢') and R(d', d),
a contradiction.) The complements of F',F’ are open sets separating ¢, d. Thus X’ is Hausdorff.
It follows that the identity map is a homeomorphism, so X = X', as claimed.

4) Let f: Xgp — Xgp be a function, preserving the relations. We must find an automorphism
s of U inducing f. Pick some set A of size continuum, such that the image of A under Exp is

all of Xgp. Then the requirement 1s:
s(a)/Exp = f(a/Exp)

for each a € A.

By compactness, it suffices to show this can be achieved for any finite subset of A at a time. Let
{ay,...,a,} C A.

Pick ¢; with ¢;/Exp = f(a;/Exp). We must merely find {by,...,b,} such that b; Fxpe;, and
tp(by...by) =tp(ay .. .an).

If this is impossible, then by compactness, there exists a 0-definable relation C with (a1,...,a,) €
C', such that there are no b; Egpe; with (by,...,b,) € C.

However, since the finitary structure on X is preserved by f, one can lift f(a;/Fxp,...,an/Fxp)
to some by, ..., by with (b1,...,b,) € C.

This contradiction finishes the proof.

Here 1s the relation between Xgp and the space of strong types, Xgy.

Lemma 2.1 There exists a canonical map from Xgp to the space of strong types. It is continous,
and surjective, with connected fibers. In fact the fibers are precisely the connected components of

Xkgp.

Proof We let Egp be the intersection of all 0-definable equivalence relations; then Ex p refines
Egyp, and the map in question sends an E'x p-class to the Egy, -class containing it. Surjectivity and
continuity are clear. If Y is a connected subset of Xg p, the image is a connected subset of Xgp,

thus a point. Conversely, if Y is a disconnected closed subset of X p, let Y71, Y5 be complementary
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closed subsets of Y. Then there exist two infinitely-definable subsets (7, C; of U | whose images
modulo Fgp are Y7, Ys. Since (', Cs have no Eg p- equivalent elements, by compactness there
exist definable D DY, Dy D Cy, Dy D Cs, R D Egp, such that R(z,y) A Di(z) A Da(y)
is inconsistent, and D = Dy V Ds. (With D R but not necessarily D;, Dy defined over §.) Tt
follows that D(y) A Di(x) A R(x,y) = Di(y). Thus the equivalence relation E’ generated by
R(x,y) inside D(z) has more than one class. On the other hand E’, being coarser than Egxp,
has only finitely many classes, so it must be generated by R in finitely manys steps. Thus F’ is a
definable equivalence relation with finitely many classes. This proves that Y contains more than

one strong type. O

2.2 The compact Lascar group

Definition 9 Let T be any first-order theory (or more generally, a Robinson theory.) Let U  be

a unwversal domain for T'. The compact Lascar group of T is the image of the natural map
Aut(U ) > Homeo(Xgp)

or equivalently the automorphism group of the structure Xgp. It is topologized using the Tychonoff

topology of pointwise convergence.

The above actually defines the compact Lascar group of a single sort of T'. The compact Lascar
group of another sort, even of the sort of k-tuples, may be bigger. One should perhaps call our
group the unary compact Lascar group associated with the given sort, and define the full compact
Lascar group as the projective limit over all sorts of 7°¢ of their unary Lascar groups. For our
considerations this will not really matter and we will stick with the given sort.

Note that the image of Aut(U ) in the Tychonoff product X% is closed. Generally speaking,
when f, are automorphisms, and f, — f pointwise, f need not be 1-1 or onto. But it is at
least a function X — X, and preserves whatever finitary structure the f,, preserve. By (4) of the

Proposition, it follows in our case that f is 1-1, onto, and induced by an automorphism.

Lemma 2.2 The compact Lascar group L for can equivalently be topologized by the compact-open

topology. In other words, 1f C C X s compact and U C X s open, then
{(felL:f(C)cU}
1s an open subset of L

Proof  An equivalent statement is that if ', F’ are closed and f(F) N F’ = (), then there exists
a neighborhood of f in L with the same property. Lift f to an automorphism ¢ of U . f(F),
P’ are each an intersection of basic closed sets; thus the intersection of all basic closed sets
containing either f(F) or F’ is empty; so there exist definable sets C, C' with F, F’ contained in
the basic closed sets C',C" respectively, and such that f(C') N C’ = . Clearly it suffices to find a
neighborhood of f with the same property.
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The definable sets C, C” are not only disjoint, but have no Fxp- equivalent elements. Thus for

some O-definable R with Exp C R, o(C) is disjoint from
Fy={z:(3y)(32)(z,y) €R,(y,z) € R,z €'}
Let {c1,...,c} be a maximal R-anticlique contained in C'. Let
U=1{gel:gla)¢gC, i=1,...1}

Then U is an open neighborhood of f in L. If ¢ € U, say ¢ is induced by an automorphism 7.
Let ¢ € C. Then R(c,¢;) for some i < [. So R(7(c),7(c;)). If also R(7(¢), ) holds for some
c e C,c €’ then 1(¢;) € Fa. But this contradicts the disjointness of 7(C) from Fs. Thus
7(C) and C’ have no equivalent elements. So ¢(C') N C’ are disjoint. This holds throughout the
neighborhood U, proving the lemma. i

Lemma 2.3 Let X = Xgp, F the space of functions from X to X, with the Tychonoff topology.
The image L of Aut(U ) in F is closed. In the induced topology, mutliplication and inversion are

continuous. The action of L on X 1s continuous.

Proof The fact that the image of L is closed was noted earlier, as a consequence of the proposition
(it can also be shown directly using finite anticliques directly.) The rest is elementary topology:
To see that multiplication is continuous, let f, ¢ € L, fg(p) € U, with p € X, U an open subset of
X. Let C be a compact neighborhood of g(p), contained in f='(U). Let O, = {¢’ : ¢'(p) € C}.
Let O = {f' : f/(C) C U}. Then Of x Oy is a neighborhood of (f, g), whose image under
multiplication lies in {h : h(p) € H}. We used here the equivalence of the Tychonoff and
compact-open topologies on L, and the compactness (hence, local compactness) of X.

The continuity of the action is proved similarly.

Finally, consider inversion. let f, — f in L. Let g, = f,~'. Refining the net, using compactness
of L, we may assume g, — g. Then f,9, = gnfn = 1 so by continuity of multiplication,
fg=gf =1. Thus f,~! — f~! as required.

Corollary 2.4 Ls(T) is a compact topological group.

Some further results on the compact Lascar group will be proved in §3 and §4.

3 Spaces of Robinson theories

We relate in this section the Kim-Pillay space of a theory to the space R of all Robinson theories.
The natural setting turns out to be not quite topological spaces, but rather certain sequences of
topological spaces (needed in order to take account of n-tuples at the same time as elements.)
We set up the framework before beginning. We will then show that a certain equivariant form
of the Kim-Pillay space embeds into R. Conversely, any space embedding appropriately into R

(relative to a given group action) can be the Kim-Pillay space of some Robinson theory.
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We will assume in this section that the Robinson A is the family of quantifier-free formulas of the
language L. Since we are working with structures varying along a topological space, it would be
more natural to let A as well as T vary continuously. This appear to involve no real difficulties,

but since only the simpler case is required in our applications we will restrict attention to it.

3.1 f-spaces and homogeneous spaces

Definition 10 An f-space X is a contravariant functor from the category of finite sets into
topological spaces. An f-space will be said to be compact, Hausdorff, ete. if each X (n) is. Similarly

for maps between f-spaces.

Writing n = {0,...,n — 1}, we see that such a functor is equivalent to giving a sequence of
topological spaces X (n), together with some continous maps X (n) — X(m) (indexed by maps
n — m, and obeying the natural commutation laws.) A map between f -spaces X,V is a sequence
of continuous maps X,, — Y,, commuting with the maps between them.

The topological spaces we will consider will all be compact, but not all Hausdorff. By a topological

group however we always mean a Hausdorff one.

Example 3.1 Let GG be a compact group, acting on a compact topological space X. An f-space
X@ can be defined by letting Xa(n) = X" /G (the quotient space of X™ by G, acting diagonally.)
Given j :n — m, Xg(j) : Xag(n) = Xg(m) is the map induced by way of the natural maps
X7 - X™.

X contains all the ” G-equivariant ” information in the space X. As we will not need this, let

us just note:

Lemma 3.2 Assume some finite sequence from X has trivial stabilizer. Then the homeomor-

phism type of X, and of the pair X, can be recovered from X¢.

Proof Let a € X™ have trivial stabilizer. Let @ be the image of a in X" /G.

Let 7y, : Xg(n+ 1) = Xg(n) be the map corresponding to the inclusion of n in n + 1. Define a
map f: X = Xg(n+1) by f(z) = (a:x). Then clearly f is a homeomorphism X — 7, ~!(a).
Define a partial ordering on the elements of U, Xg(n): a < bif a € Xg(n), b € Xg(m), n < m,
and a = (Xg(h))(b) for some injective A : n — m. This is a directed system. Clearly what
applied to @ will be true of any larger element. Thus X ~ 7, ~!(c) for any sufficiently large ¢
(with ¢ € X¢g(m).) This shows how to recover X. The G-conjugacy relation E,, on X™ is now
also easily recovered. Finally (G itself can be recovered as the group of homeomorphisms of X,
preserving each FE,,-class for each m. ad

Let us include here one more definition.

Definition 11 (diagonal map) Let X be an f-space. Let dp, @ X[1] = X[m] be the map corre-
sponding to the constant function m — 1. More generally, let §,, : X[n] — X[n x m] be the map
corresponding to the projection n x m — n. These are diagonal maps; 6y, (x) should be thought

of as (x,x,...,x).
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3.2 Robinson spaces

Definition 12 Let L be a single-sorted relational language. We let R = R(L) be the space of all
(universal) Robinson theories in a language L. Topologize R by letting a basic open neighborhood

have the form:

{r:Aer}

where A 1s a universal sentence.

Like the Zariski spaces of algebraic geometry, this space is compact T1 but not Hausdorff; when-

ever 7 C 7' € R(L), we have a specialization of points

=T

meaning that 7 lies in the closure of {7/}. In particular, in this situation, there exists a continous
map [0,1] — {7, 7'}, with 0 mapping to the special point 7, and all other ¢ € [0, 1] mapping to 7.

However we will see that R has interesting Hausdorff subspaces.

We need to move to the f-space framework. We could introduce new sorts .Sy, (of n-tuples), and
let X'(n) be the space of all Robinson theories in the language of the new sort S,. We prefer a
more parsimonious approach: instead of including R as one space in a sequence, we deconstruct
R into a sequence of smaller spaces.

We let L[n] be the language appropriate for describing n subsets of an L-structure, i.e. L together
with n new unary predicates Py, ..., P,. We view the P; as sorts; so they may enter into formulas
only via quantifiers, (Yo € F;). But each (r-place) relation of L is interpreted on each r-tuple of
sorts.

Let us call a universal sentence of the form

stmple. We do not insist that all P; should occur, but none should occur more than once.
We let R[n] be the set of all sets of simple universal L[n]- sentences, that extend to a Robinson
theory in L[n]. The topology is generated by the basic open sets G(o) = {S: 0 € S}.

We have natural maps R[n] — R[m] corresponding to maps h : m — n.

Lemma 3.3 R s a compact f-space

3.3 Embedding Kim-Pillay in Robinson spaces

Let T be a Robinson theory in L, and let X be the Kim-Pillay space, and Ls the compact Lascar
group. Let U be a universal domain for 7, and # : U — X the structure map. For z € X,
0=1(x) is an infinitely-definable subset of U (with parameters.) Given x = (z1,...,2,) € X",
let P, = 9_1(1‘2'). Let U , = U; P;, with the induced L-structure. Then U , is itself a universal

domain.
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We define a map 7 : X — R[n] by letting 7r(z) be the simple universal theory of U ; in
LU{Py,..., P,}. The Lascar group acts by automorphisms, hence rp(x) = 7p(gz) if g € Ls acts
diagonally. Thus 7 induces a map Xp; — R.

Let us say that a universal sentence ¢ holds above a set Y C X, if ¢ belongs to rp(x) for any

reyY .

Proposition 3.1 Let T be a Robinson theory in L, with Lascar group Ls and Kim-Pillay space
X. Then mp embeds Xis homeomorphically into R.

Proof

Let us prove first the continuity of 7 : X — R[n].

Let U be a basic open subset of R[n], corresponding to a universal sentence o. Let a =
(ai,...,an) € 7p~1(U). We can write ¢ in the form: (Vz; € P1)...(Vz, € P,)3, where 3
is an L-formula. Here each z; may denote several variables. By compactness, there exist defin-
able Ry, ..., Ry such that every element of the Exp-class of a; satisfies R;, and Ri(z1) A ... A
Rp(z,) = . Now 0-R; is a closed subset of X”. The complement G; of this set contains a;.
And Gy x ...G, C TT_l(U). This shows that TT_l(U) is open, and that 7p[n] is continuous.
Clearly 7r is Ls-equivariant, rr(gz) = 7r(x) for ¢ € Ls. We now show that rp induces an
injective map on X”/Ls, with Hausdorff image. Let F = (Fy,..., F,) and E' = (F),..., E/) be
two n-tuples of Fx p-classes. We must show that if £, E’ are not Ls-conjugate, then v (E), 7r(E’)
are distinct and can be separated by open subsets of R. If F, E’ are not conjugate, then II; E;,
I1; Ef have no conjugate elements. By compactness, there exists a 0-definable n-ary relation D
separating II; E;, II; Ef. So 7p(FE) contains the sentence: (Va1 € P1)... (Y, € P,)(D(x)) , while
rp(E') contains the universal sentence: (Vay € P1)...(Va, € P,)(—D(2)). Thus the image is
Hausdorff.

Now injective maps on compact spaces, with Hausdorff images, are homeomorphisms. a
Remark In 3.1, T can be recovered from the image 7 of X in R, as follows: (Va1)...(Vap)o €T
iff for every 7 € Z[n], (Vx1 € P1)... (Yo, € Py)o) €T

Let f: X — R be a map of f-spaces, with image 7. we define a Robinson theory T'(f; ) in
L as follows. Define T'(f;x) to be the set of universal sentences (Vaq)...(VYan,)o € T such that
(Ve € Pr)...(Yom € Py)o € f(dn(x)). A similar definition applies when € X|[n], giving an
L[n]- Robinson theory T'(f; z).

Lemma 3.4 T(f;x) is a Robinson theory. The theories T(f;x), T(f;i*x) are compatible when

re X", i:m—n.

Proof Essentially by definition. The point is that the interpolation property 1.1 can be verified
locally.
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3.4 Hausdorff subspaces as Kim-Pillay spaces

We have thus described a correspondence from theories with a given Kim-Pillay space X and
Lascar group Ls, to maps of f-spaces X, — R. We would now like to reverse this correspondence,
and ask: given a compact space X , a compact group G acting on X, and a map f : Xg — R,
does there exist a theory T such that Xgp(T) = X, Ls(T) = G, and 7p = fT

We first represent K as the automorphism group of a topological structure on X. We impose a
finitary structure on X, as follows. A closed subset V of X™ is called regular if V' is the closure
of the interior of V. Each p € X" has a basis of regular closed neighborhoods. If U is regular
closed, then so 18 KU. We pick some basis for the topology consisting of regular open sets; and
let L = L(K, X) be the family of sets KU, for U in this basis. Thus L is a family of K-invariant
regular closed subsets of X.

The language L = L(K, X') will thus have an n-ary relation for each such regular closed V' C X™.

The interpretation of L on X is the tautological one.

Lemma 3.5 The automorphism group of X as a structure is precisely K. Two tuples from X

with the same L-quantifier-free type are K -conjugate.

Proof K clearly acts by automorphisms. Converesly, let f be an automorphism or partial
automorphism of the finitary structure. Note that for each tuple t € X, f preserves the set Kt.
This is because {t} =Nt € V € LV, so using compactness, Kt =Nt € V € LKV | and each KV
is preserved by f.

Given a finite subset .S of X, there exists g¢ € K such that g¢|S = f|S. By compactness of K|
there exists ¢ € K such that gg — g (where the set of finite subsets of X is viewed as a net.) Thus
for any p € X, by continuity of the action, gs(p) — g(p). But gs(p) = f(p). So g = f. a

Proposition 3.2 Let X be a compact Hausdor{f topological space, G a group acting on X. Let
f:Xe —= R be a map of f-spaces. Assume:

(*) If a # b € Xg[n], then there exists a quantifier - free o(xy, ..., x,) with (Vx)o) € f(a),
((¥2)-0) € F(b).

(**) For a € Xg[1], f(a) is a theory with I-point Kim-Pillay space.

Then there exists a Robinson theory T with Xgp(T) =X, Ls(T) =G, and 0 = f

Remark 1 (*) implies:
(*’) For each n, f[n] : Xg[n] = R[n] is a homeomorphism onto the image.
Indeed it follows from (*) that the map is injective, and that the image is Hausdorff; equivalently,

f: X¢ — R is a homeomorphism onto the image.

Remark 2 If (**) is omitted, we still obtain a Robinson theory T, a surjective map Ls(T) — G,
and a surjective equivariant map Xgp(7T) — X. However it is no longer injective; the inverse

image of @ € X is homeomorphic to the Kim-Pillay space of f(a).
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Proof of 3.2. We first construct an L-structure U and a map # : U — X. This is equivalent
to giving an Lp-structure, where L; is a language with a sort S; for each © € X, and the same
k-ary relations between any k-tuple of sorts as L has.

We can define an Li-structure U 1 as follows. For each # = (z1,...,2,) € X", let U 1(z) =
(071 (21),...,07 (zy,)), the interpretation of Sy = (Sg, X ...x Sz, ). We demand that U ; be a
universal domain, and that U 1(x) be a model of T'(f; 2/G). 3.4 ensures the required consistency.
This determines U 1, hence U and 6§ : U — X.

Next we check that U 1s a universal domain as an L-structure.
Lemma 3.6 U s compact

Proof Let A be asmall subset of U , and let ¢ be a finitely satisfiable quantifier-free L-type over
A. (We do not assume however that ¢ is finitely satisfiable in any single sort of U 1.) Then ¢ can
be realized in an ultrapower U * of U | say by b. One can view U * as the one-sorted restriction
of a nonstandard extension of (U 1, K*) of (U 1, K). Coalesce the sorts of U § to those of U 4
using the standard part map st : K* — K. In other words, define ¢ : U T — X by ¢/ =stof. In
this way we can think of U 7 as an L -structure, rather than an Lj-structure.

The continuity of the maps f[n] : X" /G — R[n] implies that when a universal axiom is true in
U (z), it is also true in some neighborhood of #, and hence in the nonstandard monad of z. (L.e.
it is true in U (2') for any #' infinitesimally near x.) It follows that U j(z) = T(f; z/G).

Now U ; is a universal domain; so U ] embeds into U ; as an Li-structure, over A. Thus ¢ is
realized in U . ad
For the proof of homogeneity, note first that the action of any ¢ € G on X may be lifted to
an automorphism of U . The assumption (*) states that given two non-G-conjugate n-tuples
a,a’ € X", there exists a quantifier-free o with (Va)o,(Vz)=o holding in U 5,U 4 respectively. It
follows that any two n-tuples from U with the same basic type, lie above GG-conjugate elements

of X7.
Lemma 3.7 U s homogeneous

Proof  Let (a;), (b;) be sequences realizing the same basic type. Then the f-images a;, Ebl)
realize the same atomic type in the structure X. Indeed, R(a) holds in X iff R/(a) holds in U ,
for each R’ with R C int(R’). Using compactness and 3.5, there exists ¢ € K , ga; = b;. Now
(U 1,9 0 0) (the sorts have been renamed) is a saturated model of the same universal theory as
(U 1,0). Thus there exists an isomorphism between these two structures. So we can extend g to an
automorphism (7, g) of the structure/language pair (U 1, L). Now the sequences v(a;),b; realize
the same quantifier-free type in U ;. By the homogeneity of U 1, there exists an automorphism
a with ay(a;) = b;. The composition a7y is an automorphism of U and shows the homogeneity.

O
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Lemma 3.8 The kernel of 0 is infinitely-definable in U , and indeed equals Exp.

Proof  The kernel of # is the intersection of all binary B € L containing the diagonal of X
(or equivalently, containing one point (p,p) on the diagonal.) Thus the Kim-Pillay equivalence
relation is at least as fine as &£; it cannot be finer, since U ; has trivial Kim-Pillay space on each

sort.
Lemma 3.9 The Kim-Pillay space 1s X, the compact Lascar group is K.

Proof Tmmediate (for the second part, use 3.5).

Lemma 3.10 [fU ;| s simple, so 1sU

Proof It was shown above that the sorts of U | are the classes of a bounded co-definable equiv-
alence relation £ on U . Simplicity can be checked inside each class, with parameters permitted
also outside the class. (The infinite indiscernible sequences involved must lie entirely within a

single class.) So saturation of U and simplicity of U ; imply simplicity of U . a

3.5 A criterion for elementarity

We wish to study the effect on truth of sentences of the construction considered above.

The saturation/coalescence construction By this name (almost as long as the description)
let us refer to the formation of ¢ : U’ — X, where 6* : U * — X* is the saturation of the

situation, st : X* — X is the standard part map, and 6’ = st o 8*.

The situation is analogous to the Banach space model theory of Krivine and Henson, cf. [Henson].
There too there 1s a model and a map into a compact space. However the appropriate construction
there is ”saturation/reduction” and not ”saturation/coalescence”. In other words, the construc-
tion considered here does nothing to change the truth of quantifier-free formulas, while in the
Banach space situation unequal elements can become equal.

There is also a connection to sheaf-theoretic forcing, cf. [?].

Let X be a compact space, U a first-order structure, and let 8 : U — X be a map. Assume the
f-images of the basic relations are closed. Let U, = 6=!(p). Let U; be U viewed as a many-sorted
structure, with sorts U,. The corresponding language L, has quantifiers (3,),(V,) ranging over
Up.

We can also describe ”stable quantification near p”. Note that the stable truth of a univer-
sal sentence implies the pointwise truth, but for general sentences neither this nor the reverse
implications are valid.

Consider a sentence 1 in prenex form:
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(Vp:2)(30,y) - - - (Vp, ) (T v)0

Then we say that 1 is stably true if for any neighborhood Hy of ¢, there exists a neighborhood
G, of pg such that ... for any neighborhood H; of ¢1, there exists a neighborhood G of p1, with:

(Ve 2)(3m,y) - - (Ve r) 3m,y)0

where (V) means: for each p’ € G, (V,/), and dually for (35).
Let us say that a sentence of L; in is stably true if it has a logically equivalent prenex sentence

that is stably true.
Lemma 3.11 Let o be a prener sentence of Ly, stably true in Uy. Then o remains true in U ',

Proof By induction on the innermost quantifier, show this for sentences with parameters from

Ur.

The following lemma assumes in effect that X is a quotient of the Kim-Pillay space of a structure
U. We do not assume that U is saturated; but do assume that the map is surjective, and that U is

saturated ”pointwise”. With an additional stability assumption, we conclude that U is saturated.

Lemma 3.12 Let U be a structure, 8 : U — X a map onto a compact Hausdorff space. Assume
the image of a basic relation is closed, and that conversely the inverse image of the diagonal
A C U? is an intersection of basic, (-definable, binary relations. Form a many-sorted structure
Uy whose sorts are the fibers of 8. Assume Uy is saturated. Further assume that the theory of Uy

1s axtomatizable by stably true sentences. Then U is saturated.

Proof Let U* be a saturated model of the theory 7" of U, of the same cardinality as U. We
will show U ~ U*. Let U’ be obtained from U* as in the saturation - coalescence construction.
It suffices to show that U’, Uy are isomorphic. By 3.11,U' = Th(U;). Moreover, U’ is saturated.
Indeed let @ be a small, finitely-satisfiable collection of unary Li-formulas. They all refer to some
sort Up, p € X. Now pick a € U with §(a) = p. Let F be a family of 0-definable basic binary
relations (closed under finite intersections) whose intersection is the kernel of #. By compactness
of X, for any neighborhood G of p in X, there exists R € F such that R(a) is contained in 6=((G),
and contains 7!(p). Let ¥ be the collection of formulas R(a,z), R € F. So ® U ¥ is finitely
satisfiable in U *, hence has a solution. This solution must lie in U ,/ for some p’ infinitesimally
close to p. So in U/, ® has a solution. Thus U ’ is a saturated model of INH, so 1t 1s 1somorphic

toU 1- (]

Proposition 3.3 Let U be a universal domain for a Robinson theory T in L, and let § : U —
X = Xgp(T) be the Kim-Pillay map. Assume the many-sorted Robinson structure U | is is
first-order, i.e. the unwversal theory Ty of U 1 has a model completion Ty. Further assume that

T\ has stably true azioms. Then T is first-order.
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Proof Immediate from the lemma and from 1.14.
The assumption that U ; is first order is artificial, and can be removed as follows. In general a

Robinson theory 1s axiomatized by universal axioms, together with infinitary axioms of the form:
(Va)(3y) /\ ¢i(z) = 0(x,v)

Let us say that (V,2)(3,9) Aics ¢i(®) = 0(x,y) is stably true if for every neighborhood H of
q, there exists a neighborhood (7 of p and a finite Iy C I, such that (Vaz)(Iuy) Ajep, ¢i(z) =

0(z,y).

Lemma 3.13 With the above definition, 3.3 remains true without the assumption that U 1 is

first-order
More clumsily but more directly, we could also state:

Lemma 3.14 Let assumptions be as in 3.2. Let U (a) be a universal domain for T(f;a), a €
X¢[n]. Assume:

(**%) Whenever a € Xg[n], (e,d) a tuple from U (a), and U (a) E ¢(c,d) holds (¢ € L[n]
quantifier-free), there exists ¢ (y) such that U (a) = ¥(d), and a neighborhood U of a in Xg[n],
such that for any o' €U (a'), and any d' € U (d'), there exists ¢ € U with ¢(c/,d")

Then is T is first-order, i.e. T has a model completion T and U is a saturated model of T.

The proof is similar.

4 Simple constructions

4.1 Simple rank-one

We show here that any compact group can occur as the Lascar group of a supersimple Robinson

structure of rank one. If the group is separable; the language can be taken to be countable.

Definition 13 Let U be a universal domain (for a Robinson theory). We say U is supersimple
of rank 1 if there is no definable family of definable sets F(a), and infinite set of parameters a;,
such that F(a;) is infinite for each a;, but F(a;) N F(a;) is finite for a; # a;.

Remark 4.1 IfT is a first order theory of rank one, the independence theorem holds, hence the

Lascar group is totally disconnected.

Proof  This follows from Buechler’s much more general result, [Bu]. (Another proof, with the
same assumptions, was independently found by Shami.) It is also a special case of a result that
supersimple theories of bounded weight have connected Lascar group; cf. [W2], Lemma4.6. More
directly related to the motivation for the construction in this section is an older proof, holding
in finite rank when an additional definability condition is imposed on the rank. See [ChaH] for
a proof in this context, involving the existence of stable formulas. The definability condition is

easily seen to be redundant in rank 1:
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Lemma 4.2 Let U be a universal domain of a rank one simple Robinson theory. Let F(a) be
any definable family of definable sets. Then the set of a with F(a) finite is a definable set. Thus
U has SI-rank one.

Proof  Suppose otherwise. Then one has a, with F(ay) finite but of unbounded size. By
Ramsey’s theorem, we may assume that forl < m < n, F(a;)) N F(am) = F(a;) N F(ay). Thus the
sets F(a;) \ F(aj41) are pairwise disjoint; so they must be of bounded size. Tt follows that with
by = (a1, a141), G(b;) = F(a;) N F(az41) is of unbounded size; and the G(b;) are linearly ordered
by inclusion. Let H(b,6') = G(V') \ G(b). Then this is a uniformly definable family, containing
infinite pairwise disjoint subfamilies of arbitrarily large sets ( H (bx, bar), H (bak, bsg),...).) So H

contains an infinite subfamily of infinite, pairwise-disjoint sets, a contradiction.

Proposition 4.1 Let K be a compact group, X a homogenecous space for K. Then X can be

realized as the Kim-Pillay space of a rank 1 simple universal domain, with Lascar group K.

We put a finitary structure on X, as in 3.5 and the discussion preceding it. Call the language
L =LK, X).

U ;  Wefirst construct a many-sorted universal domain U ;. The language has a sort 5, for each
point p of X. For each n-ary relation R € L | and each n-tuple ¢t = (p1,...,pn) of sorts, there
will be a relation R; C S7 X ... x S,.

We will have universal axioms that assert:

T1) (Vaq, ..., 2n)Re(z) whenever t ¢ R.

T2) (Vaq, ..., 2,)Re(x) whenever ¢ € int(R)

On any particular finite tuple of sorts, each relation is either empty, or full, or nothing is said of
it at all. Nor do any axioms relate any two of the relations, on a given product of sorts. Thus
it is clear that (T1),(T2) have a model completion T. Let U ; be a saturated model of 7. Let
0:U 1 — K be the map such that S, = 071 ().

By Proposition 3.2, we obtain a Robinson structure U with Kim-Pillay space X and map @ :
U — X, and Lascar group K, such that for a = (a1,...,a,) € X™, U 4 is a universal domain for

the model completion of (T'1), (7'2).
Lemma 4.3 U s supersimple of rank 1

Proof Tt suffices to show that if D(z,y) is a quantifier-free formula in k& 4+ 1 variables # and
y = (y',...,9"), and @; is an infinite indiscernible sequence (matching the variable y), and
D(x, a;) 1s infinite for one ¢, then D(x, a;) N D(x, a;) is infinite for all 4, 5.

Indeed, by indiscernibility, the coordinates of the a; all lie in the same E-class. Using the definition
of U , it is clear that if D(e, a;) holds, then there exist infinitely many ¢/ Ec such that tp(c/, a;) =

tp(c, a;) = tp(e, ai).
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4.2 First order simple theories
4.2.1 Real valued dimensions

We will use a construction originally intended to build strongly minimal sets, and later Ng-
categorical stable structures. (cf. [H1], [WI1].) In both of these instances, the construction
involved (implicitly or explicitly) a certain ”generic” structure constrained by a dimension the-
ory; followed by a more complicated construction of a homogeneous substructure of the generic
substructure, with the required categoricity and stability properties. Here we will use only the
first, generic construction.

This generic theory turned up independently in a probabilistic context considered by Shelah and
Spencer. It was studied by Baldwin in these connections and in their own right. See [B].

A small technical modification will be permissible here: we will allow homogeneous amalgamation
of a structure B over a substructure A only when B (as well as every proper superset of A within
B) has strictly bigger expected dimension than A does. This will lead to the independence
property, but will not harm simplicity. (For the stable Rg-categorical construction, the wish to
have strict dimension inequalities was one of the causes for using an irrational number in the base

of the theory; this irrational led to other complications that we will not need to face here.)

Let a relational language L be given: a set of sorts, and a set of relation symbols on these sorts.
We assume given an assignment of weights w(S), w(R) (non-negative real numbers) to each sort
S and to each relation R.
Let w denote this collection of data: sorts, relations, weights. We define a primitive dimension
function on finite structures A for this language, as follows. Let dy(A) = do(A; w) be the number
of points of A, weighted according to their sorts, minus the weighted sum of the occurences of
relations;

do(A;w) = > w(S)(SNA) - > w(R)(RNA")

5 sort R r—place relation

Let Ty(w) be the universal theory that asserts: no structure with negative dy - dimension embeds
into the model.

Let B be an L-structure, A a substructure, with B\ A finite. let

do(B/A) = Y w(S)(SN(B\A4) - > w(R) (RO (B"\ A”)
s sort R r—place relation

This is a real number or —oo. In case B is finite, do(B/A) = do(B) — do(A4).
If B is any L-structure, A a substructure, and do(B U C/A) > 0 for every finite C' C B, let us
write A <, B.
If do(C/A") > 0 for every finite C' C B, and every sufficiently large finite A’ C A, we will write
A <y B.
If A is a substructure of an L-structure B, there exists a unique smallest A’ C B with A C A’
and A" <, A’; we denote it ¢l (A; B) or, if the identity of B is clear, just el (A4) . We let
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d(A; B) = do(A").

Note that d(A4; B) < dg(A’). If A and L are countable, so is A’.

There is also a smallest substructure A’ containing A with A’ < B. Let us denote it ¢l], (A; B).
The size of A’ cannot in general be bounded in terms of |A].

Let C = C(w) be the class of finite L structures A with @ <,, A.

If A B,C" are models of Ty, A a substructure of both B and €', and A <,, B, we define the
canonical free amalgam B 4C of B, C over A to be the disjoint union of B and C' over A, as
L-structures. Then C <, B®4C. Thus Bo4C = Tp.

Remark In the stable case, the canonical free amalgam is the only free amalgam. Here, relations
of weight 0 may be present; we would like to call the amalgam free regardless of whether such
relations hold between elements of B and C'. Similar weight-zero relations will at all events arise

by means of quantification.

Definition 14 Let A, B, C be substructures of M, A= BNC. Assume BUC <, M. We say
that B, C' are in free amalgamation over A within M if whenever R is a relation of weight > 0,

and R(c) holds for some tuple d from B UC, then d is entirely from B or from C

Lemma 4.4 Let B, C be in free amalgamation over A within some L-structure D whose universe

is BUC. Assume A <, B (resp. A<y B). Then C <y D (resp. C <y D) and and D =Ty.

The proof 1s omitted.

We will also consider an extension-by-definition of the language L. Let ¢(x,y) be a conjunction
of atomic formulas, in two finite sets of variables z,y. Let A, B be a structure whose elements
form a tuple satisfy ¢. Assume do(B/B') < 0 for each B’ with A C B’ C B. Let ® be the
family of all formulas with this property. In this situation, let d((Jy)¢(z,y)) = do(B). The
language L; will be the same as L, except that the formulas (Jy)(¢(x,y)) will be treated as
atomic, for ¢ € ®. (They will be underlined in this capacity.) The universal theory T will
assert that ¢(z,y) = (Jy)(é(z,y)) In addition, T will include all universal closures of formulas
Y = A\, ~(Fy)¢, such that Ty =+ = A, ~¢

Definition 15 Let ¥ be the collection of universal closures of : (Jy)(¢(z,y)) <= (Fy)(¢(z,y)).
An Ly-structure A is natural if A £ 0.

Remark If A, B are L-structures, A a substructure of B, A, B are the natural L - expansions,
and A <, B, then A is a substructure of B,.

Lemma 4.5 Let M |= TT. Then M is existentially closed iff M is nalural, and whenever
A<y M, B €C, A<, B, B finite, there exists an embedding j : B — M, j|A = Id, with
jB <M.

Proof  First assume M is existentially closed. If (3y)(¢(a,y)) holds, the atomic diagram of M
together with 7" must be consistent with ¢(a, y); otherwise for some ¢ from M such that ¢/(a, ¢),
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TE=(¢" A @), s0Ty F ¢ = —((3y)(é(a,y)), a contradiction. By existential closure, ¢(a,y) is
realized in M. This shows that M is natural. The second property follows from the amalgamation
lemma 4.4. One can freely amalgamate B, M over A; obtain a model M’ of Ty with B < M’ and
M < M’; and interpret Ly naturally in M’. Since M < M’ M is an Li-substructure of M’. By
saturation and existential closure, B embeds into M over A.

Conversely, suppose M satisfies the above properties. To show that M is existentially closed, we
may assume M is saturated. Let M’ be a model of Ty, M a substructure of M', A C M finite.
Let B be a finite subset of M’, containing A. We must show that B embeds into M over A, by
an Lj-embedding. It suffices to deal with a finite amount of the quantifier-free Ly -type of B
at a time. This type contains some underlined existential formulas and some negations of such.
We can handle the underlined existentials by making the corresponding existential formulas true,
enlarging B to include witnesses for them. Thus it suffices to find an embedding j preserving
the negated (underlined) existential formulas true of B. This will be done be ensuring that the

image jB <, M.

We can amalgamate either with respect to <, or to <. In both cases a model complete theory
exists, and is simple, with trivial Lascar group. The language is L in the case of <,,, L4 in the
case of <. The model completions are denoted f,ﬂ_ respectively. We will prove the lemmas

only for the case of T .
Lemma 4.6 T\, has a model completion Ty = Ty (w). Ty is complete.

Proof Let us show that the class of existentially closed models of Tt is elementary. Let M be
a saturated existentially closed model. The first property in 4.5 is by definition elementary. The
second one implies a stronger version of itself, that is obviously elementary:

Suppose A <, M, B € C, A <y, B, B finite, and ¢l},(A; B) embeds into M. Then this embedding
can be continued to an embedding of B in M.

To see this, replace A by cll,(A; B) in the original property.

Completeness follows from the joint embedding property of C (canonical free amalgamation over
0. ]
For a formula or partial type ¢ over B, let d(¢) = sup{d(c/B) : ¢(c)}. This supremum is actually
attained, as one immediately sees either by invoking compactness, or directly. For ¢ a formula
(without parameters) in ®, it agrees with the previous definition. By amalgamation, it does not
change if B is enlarged.

Let U =U (w) be a universal domain for 77 .

Lemma 4.7 Let B <, U , B; = cly, (BU{b;}) (i =1,2). Then By, By are in free amalgamation
over B iff d(b1/B2) = d(b1/B)

Proof One direction is immediate. For the other suppose Bj, Bs are not in free amalgamation.

So a relation of weight o > 0 holds between them. Let B;’ be a finite subset of By such that the
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relation holds between By" and Bs. Let B’ C B be finite, such that d(b;/B’) — d(b1/B) < €. Let
le = Clw(B/ U {bz}) Then d(bl/Bz) S d(bl/le) S d(bl/B/) —ec< d(bl/B)

Lemma 4.8 Ifp € S(a), ¢(L(b)), and d(pU ¢) = d(p), then ¢ does not fork over p.

Proof Let p = d(p). Note that if ¢ = ¢1 V ¢, then d(pU ¢1) = p or d((pU ¢2) = p. Thus it
suffices to show that in a model M of T, there is no indiscernible sequence by, tp(bi/a) =tp(b/a),
such that pU A, ¢(=, b;) is inconsistent for for any k-element set of indices w.

Suppose otherwise. The b; can be taken to be independent over some set containing B containing
a,ie. d(bi/B) = d(b;/BU{b; : j #i}). (E.g. continue the sequence into negative indices and
let B=aU{b_;:i}.)

Let ¢ solve p U {¢(x,b)}, d(e/ab) = p = d(p).

Extend p U {¢(z,b)} to a type ¢ = tp(e/B), with d(q) = p. We have p = d(¢/Bb) < d(¢/B) <
d(e/a) = p. Thus ely (Bc) is in free amalgmation with ¢l (Bb) over B. Let B. = cll,(Bb; M),
By =cll,(Bbi; M), C =cll,(Be; M), D =cll,(Cb; M),

Construct an L-structure F containing M, as well as a copy C’ of C', and ¢’ € (| such that there
are isomorphisms h; : BUC — FE over B with h;(b) = b;, hi(B. = By), hi(c) =, hi(C) = C7;
and with no relations between M and C” other than those implied by this. Then by 4.4, E = T,
and M <, E. Embed E into a model M of Ty , in such a way that F <, M. pU Nicw ¢(2,bi)

is realized in M, by ¢/, a contradiction.
Lemma 4.9 T, is simple.

Proof For any a, B, we must show that there exists By C B of bounded size, such that tp(a/B)
does not fork over By. Pick By such that d(a/B) = d(a/Bg), and use 4.8

Lemma 4.10 f+ has trivial Lascar group
Proof The independence theorem holds for types over .

Lemma 4.11 T depends continously on the weights w, in the following sense. If o is a universal
consequence of T, (w), then there exist finitely many sorts S; and relations R;, and € > 0, such
that for any other system of weights w', if |w(S;) — w/'(S;)| < € and |w(R;) — w'(R;)| < €, then

o is also a consequence of Ty (w')

Proof  With underlines removed, the sentence o 1s actually a consequence of some axioms of
To(w). Thus it suffices to show that each of these axioms hold in Ty(w’). A typical axiom of
To(w) asserts that a particular L-structure A, with negative w-weight, does not embed into the
model. For sufficiently near w’, A will also have negative w’-weight, so the same sentence will be

a sentence of Tp(w').
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4.3 A rank one simple Ny-categorical structure

The construction of the §5.1 can be used to build simple Rg-categorical structures, that do not
have locally modular geometries.

Let L be a one-sorted language, with sort S, and a n 3"-ary relations R, ; for each 1 <1 < n.
Let w(S) =1, w(R, ;) =1 for each n.

We consider only L structures where R, (a1, ..., a,) implies that a; # a; (call these irreflexive.)
This is to avoid having uncountably many, or even infinitely many, nonisomorphic structures of a
given finite size. We will also require symmetry (this for an inessential reason, the ”two” in 4.16.)
Let C be the family of finite irreflexive L-structures, whose every substructure has at least as

many points as relations:
C={A:]Al <Ry, (VB C A)do(B) >0}

Let
C'={AeC: (VB CA)B|<3eB-1

In particular, C’ contains structures of any size 0, 1,2, ... with no relations. The smallest structure

in ' bearing a relation has three elements and one ternary relation, making for dimension 2.

Lemma 4.12 C’ has the joint embedding property, and the <-amalgamation property. Indeed if
AB Cel, A<, C, A<y B, then Bo4C €'

Proof We may assume |A| < |B| < |C]. In addition by the strict inequality, do(A4) < do(B).
Thus if D = Bo,C € (', we have

do(D) = do(C) + (do(B) — do(A)) > do(C) + 1

so 3%(D)=1 > 3.340(C)=1 > 3. Yet |D| = |C| + (|B| — |A]) < 2|C|. Thus |D| < 39(P)-1,
Any subset D' of D is itself a free amalgam, D' = (BN D')®anp' (CND'). So the same argument
applies and shows |D’| < 3%(P)=1 Thus D e ¢/ O
Thus we may form the amalgamation limit A’ of C’. Tt is a homogeneous substructure of a
model M (w) of the theory f+(w) constructed above. But now for any finite A C M’ ¢l (A; M)
and even cl!, (A; M) are finite. indeed, the cardinality of ¢l/, (A; M’) cannot exceed 3d(AMY)~1 <
3d0(A)=1  We will refer to ell, simply as closure. So the closure of a finite set is finite.

The type of a closed substructure A of M’ is determined by the isomorphism type; hence there
are only finitely many types of closed substructures of a given finite size. Any finite substructure

of M’ embeds into a closed one of bounded dimension, hence also size. Thus:

Lemma 4.13 Th(M') is Ng-categorical. It is homogeneous over algebraically closed subsets.

Lemma 4.14 (Independence theorem) Let E € ', B’ € ' a substructure. Let Ag, A1, As, Ao1, Aoz, A1

be closed substructures of E. Assume A;; € C', and A;; = cll, (A; U A;). Assume Ag, A1, Ay are
free amalgamation over a closed substructure B. Further assume that E = U;; A;;, and that the

relations on E are just the union of the relations on the A;;. Then E € C'.
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Proof  Ajs is in free amalgamation over A; U As with Agy U Ags. Thus at all events, using
4.4 twice, E € C. Let F be a substructure of E. We must show that |F| < 2%()=1  We
may assume I’ = el (F; E), since taking closure increases size and does not increase dy. Let
Fy = FNA;, Fyy = FN Ay, Then Fy, F;; are closed substructures of A;,A;;. So they are in
C'. F = UF;;. We have |F;;| = 3di—1, dij = do(F;;). Say dio is the largest of the d;;. If
dia = do(F), then F C cll,(F12) = Fi2, and the result follows already from 4.12. Otherwise,
|F| < 3 3412-1 = 3d12 < 3do(F)=1, O
Remark The independence version inductively implies a stronger version, where n 4+ 1 indepen-

dent sets A; (i =0,...,n), together with the closures Ag;, A1;, and A1 ,.
Lemma 4.15 M’ is simple of rank 1.

Let ¢(z,b) be a formula in one variable x. If d(¢) = 1, then following the proof of 4.8, using
lemma 4.14, ¢ does not fork over §. If d(¢) = 0, then a € ¢}, (b; M’) so we saw above that
a € acl(b).

The following additional facts are clear:

Lemma 4.16 M’ is transitive and primitive. It has precisely two 2-types of distinct points:
those whose closure has two points, and those whose closure has three. Thus the algebraic closure

relation gives a non-homogeneous matroid (in the sense of Zil’ber.)

Remark The above is a modification of the construction of stable, Xg-categorical structures, (cf.
[W1]). The stable case involved an irrational e with poor rational approximations from below.
Now if § is rational, it has one good rational approximation, but the ones strictly below it are as
poor as for any irrational. The argument is thus actually simplified. The difficulty in the stable
case was that the gap between < 3 and < [ creates a region of the structure not controlled by
numerical dimension; this is however not a problem if one only wishes for simplicity.

The relation to the rank of the theory is this: using rational o as a weight for a single relation,
on a sort of weight 1, yields a superstable theory, of rank w®. For irrational «, the theory is a
limit of such, stable but unranked. Using o = 1 ;| even with strict inequalities, retains rank 1.
Remark Simplicity is associated with the independence theorem; the property that P(3)~ -
diagrams can be completed. This was obtained cheaply by letting the growth rate of algebaic
closure be exponential with base 3. I did not check, but assume the generalized independence
theorem fails in M’. (This states that all P(n)~-diagrams can be completed; see the definition
below.) However, if 39! is replaced by (d + 1)!, the resulting structure will have the P(n)~-
amalgamation property for all n.

We give here a somewhat weak version of the amalgamation properties:

Definition 16 The P(n)~ -amalgamation property is the following:
Let I = P(n) \ {n}, ordered by inclusion. Let (M, j;+) be a directed system of substructures of

U , with index set I. Assume:

?
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(1) For any s € P(n)~, {jisMyi} : i € s} is independent over jy , My.
(2) Ms = acl(UtEsjtys(M{t}.
Then the directed system extends to one on P(n), with (1) valid for s = n.

This leads to the following question. Let M be an infinite combinatorial geometry, perhaps

carrying additional structure. Assume:
1. For some constants C, b, every set of rank k& has at most Cb* elements.
2. Any 1somorphism between closed subsets of M, extends to an automorphism of M.
3. The generalized independence theorem holds.

(Note that (1),(2) implies that M is Rg-categorical, while (3) for implies simplicity.)
Must M be locally modularl’

5 Appendix: Amalgamation and the saturation spectrum

We answer here a question from [Sh1].

Let A = AT > k. Consider the property:

SPr(A, k) : Every model of T of power A extends to a k-saturated model of power A.
Shelah shows in [Sh1],[Sh4]

1. T non-simple implies SPr = SPs =gep {(A, &) : A = A<F}
2. T stable implies SPr(A, &) = SP1 =4c5 {all A s}.
3. A strong limit, 7' unstable implies SPr (A, k) iff A = A<,

4. Let SPy =qcy SPr where T is the theory of the random graph. Then (Engelkind-Karlowitz)
p=p<" < X< 2y implies (A k) € SPs.

5. SPy C SPr for any simple unstable 7.
6. In some model of ZFC: for all simple unstable 7', SPr = SPs # SPs,).

7. In some model of ZFC: for some T with a simple predicate P, SPp p # SP»).

Question: Does the statement in (6) follow from ZFCT]

Definition. Let 2 < k < m. By a k-graph we will mean a structure (A4, R), R a k-ary relation on
A, such that R(ay, ..., az) implies that aq, ..., ay are distinct, and that R(as1, ..., az) holds for
any permutation f. Thus we will sometimes consider R as a collection of k-sets. An m-clique is
a subset of A whose every subset of size &k is in R. A k-graph is m-free if it contains no m-clique.

The generic m-free k-graph is the unique countable m-free k-graph embedding every finite m-free
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k-graph, and admitting quantifier elimination. T}, ,, is the theory of this graph. T, = T}, 141. We
will also consider the generic (k + 1)-partite (k + 1)-free k-graph: it is divided into k + 1 sorts,
any k-edge consists of points from distinct sorts, there is no k + 1 clique, and otherwise anything

can happen. The theory of this will be denoted T}.

Lemma 1. 75, @5 not simple. For k > 3, T}, p, 1s simple unstable, and in fact has Shelah degree
1. Similarly T}.

Proof. Let T' be a model of Tj . Let (a(?)(¢ € w)) be an indiscernible sequence of n-tuples
a(i, 1), ... a(i,n), Ay = {a(i, 1),...,a(i,n)}, and let D(z,a(i)) be a complete atomic type with
infinitely many solutions. We must show that {D(z, a(¢)) : ¢} is consistent. Define a k-graph A
consisting of U; A; U{c}, where ¢ is a new point; and with R(b) if truein ', or if ¢ € b, b—{c} C A;
for some 4, and D(z,a(?)) so dictates. By indiscernibility, ¢ solves D(x, a(é)) consistently for each
t. It remains only to check that A is m-free. Suppose B is an m-clique. By definition of A,
¢ € B, and every (k — 1)-subset of B — {c} is in A; for some 4. Since the A;’s form a A-system
and (k—1) > 2, it follows that for at most one ¢ is B — {c¢} — A; nonempty. Hence B — {¢} C A;

for some ¢ and so B as a k-graph is described by D, so it is not an m-clique.
Lemma 1.1. Let k > 3. Then SP(T} ) C SP(T}).

Proof. In each case it is more convenient to think of the universal part of the theory. Use the
following interpretation: given an m-free k-graph I') let I'y,... 'y be copies of I'; and T'y41 =
[[]™~*: and let a be a k-edge iff a is a subset of U;I'; containing one point from each I'; except
for ¢ = iy, and either a is a k-edge of T and ég = k + 1, or Ua is an (m — 1)-clique of T and
ip < (k4 1). This gives a (k + 1)-free (k + 1)-partite k-graph T'. This is an interpretation of the
universal theories, in the sense that every model of 7} embeds into one of the form I'', T’ a model

of SP(Tk ). From this the lemma follows.

Proposition 2. It is consistent with ZFC that (N,,N1) ¢ SP(T}), while 2% = Ry, 2% > R,
so (R, Ny) € SPs.

Let I be a k-partite k-graph. By (I')! we will mean the 1-subsets of ' with each point from a
different sort. Say that I' is x-representable if there exists a map ¢ : (I')*~! — P(x) such that for
u € (D)% uis a k-edge of T iff N{x(v) : v € [u]*~1} = 0.

Lemma 3. If (R,,Ry) € SP(T}) then every k-partite k-graph on R, is < R, -representable.

Proof. Let T be a k-partite k-graph on R, and is not ®,,-representable for any n. Let ' =w x T
be the model-theoretic disjoint union of w copies T',, of T (sortwise; with no new edges). View T
as being a model of the universal part of 7], with one sort, say S, being empty. Let I'* be an
Ri-saturated model of T} containing I' and of size N, ; let M be the interpretation of the sort .S
in I'*, and let M = U, M,,, card(M,,) = X,,. Define x, : (I,)*** — P(M,) by letting

Xn(u) ={y € My, s uU{y} is a k-edge of T"}.
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Suppose for contradiction that no x, is a representation of I';,. Then for each n there exists
by, € ([n)* such that either (i) b, is an edge and N{x(v) : v € [by]*"1} # 0, or (ii) b, is a
non-edge but N{x(v) : v € [b,]*71} = 0. Now (i) is impossible since I'* is (k + 1)-free. So (ii)
holds. Thus there are no k-edges of TV among U,b,; so it is consistent to demand an element
c € S(I'*) such that uw U {c} is an edge of I'* for each u € [b,]*"!, n < w. Say ¢ € M,,. Then
c € N{x(v) : v € [by])*~ !}, contradicting (ii). Thus some I',,, equivalently T, is N,,-representable.

Proof of Proposition 2. We start with a ground model satisfying GC H, and force ¥, new subsets
of Ry. Actually it is convenient to directly obtain a k-partite k-graph I' on R, by forcing a
function F' : X% — {0,1}, and considering it as the characteristic function of such a graph I' (in
which R, plays the role of each of the k sorts; formally T' = (k) x X,,). A forcing condition is any
function p : D — {0,1} with D C N® countable; the partial ordering is inclusion. We will show
that I' is not < N, -representable.

The forcing has the No-chain condition and is Ni-closed, hence adds no new countable sequences,
collapses or singularizes no cardinals, and makes 2% = Ry, 2% > N,

Suppose x : ([')f~1 — P(x)is a (name for a) representation, k < ¥,,, k > N;. Let py be a condition
that forces this fact. For any y € (I')*~! and any o € &, let I(y, @) be a maximal antichain above
po deciding whether o € x(y). Given u € [R, ]!, and ¢ € [k]}, let *u = {(t1,u1),..., (t1,u1)}
where t = {i; < ... <1}, u={u; <...<wup}. Let

J) =U{I{t"u,a) :a € K, t € [K]"~1}

D(u) = U{dom(p) : p € J(u)} Udom(pg).

By the ®j-chain condition, each I(y, ) has size at most Ry, and so J(y) and hence D(y) have
size at most x. ¥, being sufficiently larger than &, it is possible to find w € [X,]* such that:

(%) If w € [w*~1 w=uU{z}, then = ¢ D(u).
Let b = k™w. There are two cases.

CASE 1. pg forces: N{x(v) : v € [b]*~!} = (. In this case let p; be the condition extending py and
stating that b is not a k-edge of T'. By (x), b is disjoint from dom(py), so this is consistent. But

then py forces that b is a counterexample to the definition of a representation, a contradiction.

CASE 2. Not case 1. Then for some generic filter G containing pg, and some « € &, in the extension
by G we have o € N{x(v) : v € [b]*~1}. Thus for each v € [b]*~!, there exists p, € G N I(y, )
and forcing « € x(v). Discarding GG now, we keep the information that U{p, : v € []*71} is a
condition. But by (%), b ¢ dom(p,) for any v € [b]*~!. Thus

U{py v € 0" U {(6, 1)}

is a condition. But this condition forces o € N{x(v) : v € [b]*~1}, and also that b is an edge.
Again a contradiction to the definition of a representation. Thus I' is not < X,-representable in

the generic extension, and by Lemma 3 the proposition is proved.
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